There have been month of silence in this BLOG, as I was running into to serious trouble beyond the elementary Axioms for Q-Orders, i.e. those that equip Q-Spaces with a suitable topology. More over it turned out that –at least for the moment- an additional axiomatic relation may be needed: while the relation Q clearly models the conformal invariant structure –the Topology- of Space-Time, it misses the projective invariant part, which only jointly as shown by Weyl long time ago fix also the metric. The work isn’t done yet. Nevertheless I would like to present the current stage with its stabilized Axioms for Q-Orders and the first intents to manage the additional relation.
We are looking for a combinatorial framework that, in an essential way, includes the structure of Space-Time as a continuous model on one side and the structure of of Petri-Nets as a finite (countable) model on the other.
Essential means that physically different Space-Times and logically different Petri-Nets shall have different models and that different models produce different Space-Times and different Petri-Nets respectively.
For Space-Times a seminal contribution of S. W. Hawking1 introduced a unique combinatorial structure –a partial-order– attached to Lorentzian Manifolds with some additional restrictions, that up to conformal mappings defines the manifold (review2 on Causal Space-times). David Malament3 showed how this combinatorial structure alone, under suitable conditions, is sufficient to reconstruct Space-time up to conformalty.
For Petri-Nets since 1973 there as been a systematic effort4 to detect the underlying combinatorial structures, specifically in the theory of Concurrency or causal structures defined by event-occurrence systems.
The problems
-
the mentioned Space-Time models in their definition make a heavy use of concepts typical for the continuous world, like Hausdorff-spaces as basic model-domain or using properties borrowed from Linear Algebra, all which as such can not be transported into the finite/countable domain.
-
the mentioned Petri-Net models -namely concurrency-theory- require countable models to work and therefore as such a not suited to express all the technical concepts as used in continuous models. On structural level, there is no Linear Algebra, hence appears on first sight impossible to express concepts like convex let alone tensors or more complicated constructs.
-
Both models depend on Global Partial Orders even when expressing purely local concepts, a slight contradiction with the basic idea of General Relativity as something locally defined.
The ideas for solution
-
Both model domains use Paths respectively Curves as a basic building block, where Curves in both domains model trajectories -world-lines- of particles (more precisely potential trajectories see5). All expressed relations and properties can be re-written using only curves and the relations among points as defined by curves.
-
As Petri pointed out quite early6, on partial orders there exists a generalization for the concept of Dedekind-continuity and -completeness that allows for countable models, yet if applied to full-orders produces the known results. Crucial are two types of points, closed and open, while retaining the idea that the emerging topologies should be connected.
-
A little bit later Petri proposed the separation relation {{a,b},{c,d}} -an unordered pair of unordered pairs- as the basic order-producing relation. This relation expresses the separation of 4 points on a line, and is well defined on any Jordan-Curve, open or closed, i.e. there is no difference between a line, may be with suitable compactification, and a circle.
-
A careful analysis of the original article from Hawking, specifically analyzing the relation between local time-like cones, which form the base for the topology, the definition of regular paths in that topology and their relation to time-like curves, allowed to eliminate the reference to linear concepts like convex and to define local time-like cones and their properties using only combinatorial concepts.
-
This revision in turn demanded a revision of concepts in Petri-Nets. While in the original model the open elements are conditions and the closed elements are the events, and likewise sets border by conditions considered open while sets bordered by events closed, we need exactly the dual: events and event-bordered sets are open, conditions and condition-bordered sets are closed. It should be noted that for countable structures -Petri-nets are normally assumed to be countable- both sets -open and closed- define the same dual Alexandrov7 Topology. However already the comparison of Dedekind continuity between total orders and half-orders alas Occurrence-Nets shows that the common type of elements in both -the non-branching conditions- must be closed.
-
In a Hawking-space all points are closed. Therefore it was necessary to overcome the initial interpretation of Einstein as if world points would correspond to physical events. They do not! If the Hawking-space models the loci -the geometry-, then a physical event can not have an exact place as Quantum-Mechanics tells us. A similar observation made decades ago Pauli8. Curiously enough, in this interpretation nothing ever happens in Hawking-Space as there are no events. To have events we must coarse grain first.
-
Likewise a too naive interpretation by Net-Theory of GRT had to be abandoned, as if each world-point branches into infinite many world-lines. Actually a world-point summarizes the whole time-like pre- respectively post-cones as such and not individual lines. This is the essence of the construction of regular paths by Hawking and the distinguishing conditions from Malament.
Based on the above I obtained the Axiom-sets shown in the picture below.
Some models for Q-Orders are:
(1) Occurrence-Nets (with the above change and some additional requirements) as subclass of Petri-Nets
(2) The Real Numbers (but not Rationals nor Integers) (Q-order is derived from classical order)
(3) The Unit-Circle S1 (and the Circle Group) (but not n-cyclic Groups) and the Real Line (Q-order is derived from the relation among four points)
(4) The Minkowski-Space and the Quaterions (Q-order is derived from Q-Topology)
(5) The Causal structure of a Lorentzian manifold as defined by Hawking and others (Q-order is derived from the relation among four points on a time-like curve)
1 S. W. Hawking A.R. King and P. J. McCarthy, A new topology for curved space-time which incorporates the causal, differential and conformal structures Journal of Mathematical Physics Vol. 17, No 2, February 1976
2Alfonso García-Parrado, José M. M. Senovilla, Causal structures and causal boundaries, arXiv:gr-qc/0501069v2
3 D. Malament, The class of continuous timelike curves determines the topology of spacetime Journal of Mathematical Physics, July 1977, Volume 18, Issue 7, pp. 1399-1404
4 Olaf Kummer, Mark-Oliver Stehr: Petri's Axioms of Concurrency - A Selection of Recent Results , Proceedings of the 18th International Conference on Application and Theory of Petri Nets, Toulouse, June 23-27, 1997, Lecture Notes in Computer Science 1248, © Springer-Verlag , 1997
5 David B. Malament, Classical Relativity Theory, arxiv.org/abs/gr-qc/0506065v2
6 Petri, C.A., Concurrency. Lecture Notes in Computer Science Vol. 84: Net Theory and Applications, Proc. of the Advanced Course on General Net Theory of Processes and Systems, Hamburg, 1979 / Brauer, W. (ed.) --- Berlin, Heidelberg, New York: Springer-Verlag, 1980, Pages: 251-260
7Not to be confused with the Alexandrov Topology used by Hawking
8Pauli, Vorlesungen in Turin über nichtlokale Feldtheorien in Google-Books http://books.google.com/books?id=NU9OUj-f8cYC&hl=es Page 34 ff.
No comments:
Post a Comment